→ Работайте удаленно из любой точки мира → Проектируйте и обучайте ML-модели, включая нейронные сети → Получите доступ ко всем льготам для айтишников → Зарабатывайте от 180 000 ₽
Специалист по нейронным сетям
Освойте самую востребованную профессию в анализе данных
Старт:
25 января
Длительность:
24 месяца
Уровень:
с нуля
Меню
Курс по обучению нейронных сетей
Присоединитесь к новому потоку или начните учиться в удобное время
Это специалист, который строит, обучает и тестирует модели машинного обучения. Он находит закономерности, дает прогнозы и предлагает лучшие решения в разных сферах.
Специалист по нейронным сетям может:
Кто такой специалист по нейронным сетям
создать модель для автоматической постановки диагноза пациенту оптимизировать транспортное движение разработать систему распознавания лиц
Машинное обучение (ML) заключается в создании математических алгоритмов, обучающихся решать различные задачи. Нейросети — один из самых перспективных и продвинутых методов машинного обучения. Задачи, которые решает типичная нейросеть: классификация, предсказание и распознавание. Обучение нейронных сетей называется глубоким обучением (DL).
Почему нейронные сети и ML — это хорошо Обученная под конкретную задачу нейросеть может легко превзойти человека. Уже сегодня нейросети лучше людей играют в игры, которые нельзя просчитать математически (вроде го), диагностируют болезни и распознают объекты на фотографиях. Эта технология только развивается, но уже очень востребована — сфера применения машинного обучения быстро растет.
Что такое машинное обучение и нейронные сети
Что могут делать нейронные сети
DeepMind (дочерняя компания Google) создала визуальные модели всех известных науке белков (это 200+ миллионов), включая белки, закодированные в геноме человека.
Белки — это основа нашей жизни. Несмотря на кажущуюся простоту их строения, мы до сих пор не можем в полной мере раскрыть все бесконечные функциональные возможности их структур.
Созданная в NASA нейронная сеть научилась распознавать световые узоры, указывающие на существование планеты. Так удалось обнаружить экзопланеты Kepler-90 и Kepler-90i, которые находятся в планетной системе, похожей на нашу.
Компания VisionLabs создала платформу биометрического распознавания лиц для денежных переводов и авторизации при доступе к персональным данным. Система использует нейросети, благодаря чему для идентификации личности достаточно картинки любого качества. Платформу уже используют более 40 банков и кредитных бюро в России и странах СНГ.
Продвигать науку вперед
Искать новые космические объекты
Распознавать лица для авторизации
Сфера применения нейросетей ежегодно растёт
Инвестиции в искусственный интеллект за год выросли с $ 48 млрд до $ 93,5 млрд
По прогнозам, рынок искусственного интеллекта к 2025 году превысит 190 млрд долларов
Специалист по нейронным сетям нужен в любой индустрии: IT-сфера, банкинг, дизайн, наука, образование, медицина
По данным Всемирного экономического форума, работа в Data Science занимает первое место в рейтинге профессий с самым большим спросом на рынке до 2025 года
Количество вакансий в Data Science выросло на 433% за 3 года
Чтобы посмотреть как устроена работа в большой IT-компании
Чтобы быстрее влиться в среду
Чтобы расти в карьере и работать из любой точки мира
Новичок
Программа рассчитана на обучение науке о данных с нуля. Вы начнете с SQL и Python, получите необходимые знания по математике, статистике и теории вероятности, освоите технологии ML и сможете применить их на практике.
Программист
Вы программируете на Python и столкнулись с задачами, в которых необходимо задействовать алгоритмы машинного и глубокого обучения. На курсе вы освоите продвинутое машинное обучение, создадите и обучите рекомендательную систему и несколько нейронных сетей.
Вам подойдет курс по созданию нейронных сетей, если вы
Аналитик
Вы узнаете, какие задачи решает машинное обучение, примените основные методы предобработки данных. Научитесь обучать модели, делать прогнозы и применять это для решения бизнес-задач.
Программировать на Python и использовать этот язык для анализа и обработки данных
Получать данные из разных источников: базы данных, файлы, интернет
Вы научитесь
Управлять данными в базах данных на языке SQL, а также работать с данными, представленными в специальных форматах
1
2
4
3
Проводить разведывательный анализ и проверку гипотез с помощью Python
Работать с моделями и алгоритмами машинного обучения и решать на их основе практические задачи
5
Уже к середине курса вы сможете
Разработать модель предсказания кредитного рейтинга
Решить задачу классификации спама SMS-сообщений
Построить модель для увеличения продаж в розничном бизнесе
Создать систему рекомендаций подходящих товаров при покупке
Создадите вместе с сотрудником Центра карьеры продающее резюме
Наметите карьерный трек на онлайн-встрече с карьерным консультантом
Центр карьеры
1
2
Потренируетесь проходить собеседование на интервью с HR-менеджером
3
По данным Центра карьеры SkillFactory
77%
студентов получили приглашение на собеседование
81%
студентов достигли поставленной цели
Дополнительное карьерное сопровождение
Карьерные митапы Разборы кейсов и резюме в закрытой группе Рекомендации от карьерных консультантов, коучей, IT-рекрутеров 3 недели сопровождения на этапе выхода на рынок труда
Ревью резюме
Карьерная консультация
Тренажер собеседований
4,6
432 отзыва
4,8
4,6
78
%
298 отзывов
172 оценки
235 отзывов
Студенты рекомендуют нас
Эффективный формат онлайн-обучения
Занимайтесь в своем темпе
Наши курсы ориентированы на тех, кто работает и хочет сам регулировать нагрузку. Занимайтесь без отрыва от работы и выделяйте на учебу столько времени, сколько есть прямо сейчас (15 минут или 2 часа в день).
20% обучения — интересная и важная теория
Теория разбита на короткие блоки, после которых обязательно идет практика.
Вы смотрите короткие видео, изучаете текстовые материалы и приступаете к заданиям, чтобы закрепить знания.
80% обучения — практика в разных форматах
Для развития навыков у нас есть 5 видов практики: тренажеры, тесты, домашние задания, проекты и хакатоны. Разнообразие форматов помогает усваивать знания максимально эффективно.
Менторы и координаторы помогут дойти до конца
Все менторы — опытные практики из IT-индустрии. Они дают качественную обратную связь на задания, отвечают на вопросы и помогают студенту достичь своих целей во время обучения. Выпускники оценивают менторскую поддержку на 9,1 балла из 10.
Координаторы постоянно на связи, чтобы решить любой организационный вопрос. Их задача — мотивировать студентов и помочь пройти курс до конца.
Фокус на подготовке к трудоустройству
Вы тренируетесь на кейсах компаний, а также делаете проекты для реальных заказчиков в команде. Помогаем оформить резюме и подготовиться к собеседованиям.
Лучших студентов рекомендуем по накопленной базе работодателей. На стажировках в компаниях-партнерах вы отработаете навыки и пообщаетесь с потенциальными работодателями.
На этом этапе вы изучите основы программирования на Python, научитесь предобрабатывать и анализировать данные, а также познакомитесь с основными задачами дата-сайентиста.
Программа «Курса по нейронным сетям»
Блок 0. Введение
1 неделя
Вы сможете сформулировать для себя реальные цели обучения, узнаете, в чем ценность Data Science для бизнеса, познакомитесь с основными задачами дата-сайентиста и разберетесь, как строится разработка любого DS-проекта.
INTRO-1. Как учиться эффективно — онбординг в обучение
INTRO-2. Обзор профессии. Типы задач в Data Science. Этапы и подходы к разработке Data Science проекта
Проектирование разработки
5 недель
Вы научитесь работать с основными типами данных с помощью языка Python и сможете применять в повседневной работе циклические конструкции, условные операторы и функции.
PYTHON-1. Основы Python
PYTHON-2. Погружение в типы данных
PYTHON-3. Условные операторы
PYTHON-4. Циклы
PYTHON-5. Функции и функциональное программирование
PYTHON-6. Практика
PYTHON-7. Гид по стилю в среде Python (бонусный)
Работа с данными
8 недель
На этом этапе вы овладеете базовыми навыками работы с данными: научитесь подготавливать, очищать и преобразовывать данные так, чтобы они были пригодны для анализа. Кстати, об анализе: вы будете анализировать данные с помощью популярных библиотек Matplotlib, Seaborn, Plotly.
PYTHON-8. Инструменты Data Science
PYTHON-9. Библиотека NumPy
PYTHON-10. Введение в Pandas
PYTHON-11. Базовые приемы работы с данными в Pandas
PYTHON-12. Продвинутые приемы работы с данными в Pandas
PYTHON-13. Очистка данных
PYTHON-14. Визуализация данных
PYTHON-15. Принципы объектно-ориентированного программирования (ООП) в Python и отладка кода (дополнительный модуль)
Проект 1. Аналитика датасета по закрытым вопросам
Подгрузка данных
6 недель
Вы сможете выгружать данные из разных форматов и источников. А поможет вам в этом SQL — язык структурированных запросов. Вы научитесь использовать агрегатные функции, соединения таблиц и сложные объединения.
PYTHON-16. Как выгружать данные из файлов разных форматов
PYTHON-17. Получение данных из веб-источников и API
SQL-0. Привет, SQL!
SQL-1. Основы SQL
SQL-2. Агрегатные функции
SQL-3. Соединение таблиц
SQL-4. Сложные объединения
Проект 2. Подгрузка новых данных. Уточнение анализа
Статистический анализ данных
7 недель
Разведывательный анализ данных (EDA) — вот что окажется в центре вашего внимания. Вы познакомитесь со всеми этапами такого анализа и научитесь проводить его с помощью библиотек Statsmodels, Scikit-learn, Seaborn, Matplotlib, SciPy, Pandas. Кроме того, вам удастся поработать на Kaggle — популярном сервисе по участию в соревнованиях.
EDA-1. Введение в разведывательный анализ данных. Алгоритмы и методы EDA
EDA-2. Математическая статистика в контексте EDA. Типы признаков
EDA-3. Проектирование признаков (Feature Engineering)
EDA-4. Статистический анализ данных на Python
EDA-5. Статистический анализ данных на Python. Часть 2
EDA-6. Проектирование экспериментов
EDA-7. Kaggle-площадка
Проект 2
Введение в машинное обучение
9 недель
Вы познакомитесь с ML-библиотеками для моделирования зависимостей в данных. Вы сможете обучить основные виды ML-моделей, провести валидацию, интерпретировать результаты работы и выбрать важные признаки (feature importance).
ML-1. Теория машинного обучения
ML-2. Обучение с учителем: регрессия
ML-3. Обучение с учителем: классификация
ML-4. Обучение без учителя: кластеризация и техники понижения размерности
ML-5. Валидация данных и оценка модели
ML-6. Отбор и селекция признаков
ML-7. Оптимизация гиперпараметров модели
ML-8. ML Cookbook
Проект 3. Задача классификации
ОСНОВНОЙ БЛОК
Линейная алгебра, математический анализ, дискретная математика — звучит страшно, но не пугайтесь: разберем все эти предметы и научим с ними работать! На втором этапе вы погрузитесь в математику и основы машинного обучения, узнаете больше о профессиях Data Science, а также благодаря профориентации выберете трек обучения второго года.
Математика и машинное обучение. Часть 1
6 недель
Вы сможете решать практические задачи с помощью ручного счета и Python (векторные и матричные вычисления, работа с множествами, исследование функций с помощью дифференциального анализа).
MATH&ML-1. Линейная алгебра в контексте линейных методов. Часть 1
MATH&ML-2. Линейная алгебра в контексте линейных методов. Часть 2
MATH&ML-3. Математический анализ в контексте задачи оптимизации. Часть 1
MATH&ML-4. Математический анализ в контексте задачи оптимизации. Часть 2
MATH&ML-5. Математический анализ в контексте задачи оптимизации. Часть 3
Проект 4. Задача регрессии
Математика и машинное обучение. Часть 2
6 недель
Вы познакомитесь с основными понятиями теории вероятности и математической статистики, алгоритмами кластеризации, а также научитесь оценивать качество произведенной кластеризации и представлять результаты в графическом виде.
MATH&ML-6. Теория вероятностей в контексте наивного байесовского классификатора
MATH&ML-7. Алгоритмы на основе деревьев решений
MATH&ML-8. Бустинг и стекинг
MATH&ML-9. Кластеризация и техники понижения размерности. Часть 1
MATH&ML-10. Кластеризация и техники понижения размерности. Часть 2
Проект 5. Ансамблевые методы
ML в бизнесе
8 недель
Вы научитесь использовать ML-библиотеки для решения задачи временных рядов и рекомендательных систем. Вы сможете обучить ML-модель и провести ее валидацию, а также создать работающий прототип и запустить модель в веб-интерфейсе. А еще получите навыки A/B-тестирования, чтобы можно было оценить модель.
MATH&ML-11. Временные ряды. Часть 1
MATH&ML-12. Временные ряды. Часть 2
MATH&ML-13. Рекомендательные системы. Часть 1
MATH&ML-14. Рекомендательные системы. Часть 2
PROD-1. Подготовка модели к Production
PROD-2. Прототип Streamlight+Heroku
PROD-3. Бизнес-понимание. Кейс
Проект 6. Тема на выбор: временные ряды или рекомендательные системы
УРОВЕНЬ PRO
На третьем этапе вас ждет полная прокачка в Machine Learning. Вы познакомитесь с одним из методов машинного обучения — глубоким обучением (DL), а также вас ждет полноценный блок выбранной специализации: вы сможете освоить навыки машинного обучения (ML).
При выборе CV или ML вы сможете пройти курс по NLP без менторской поддержки бесплатно
Трек ML
29 недель
На ML-треке вы научитесь решать углубленные задачи машинного обучения, овладеете компетенциями дата-инженера, отточите навык работы с библиотеками Python. Также вы научитесь создавать MVP (минимально жизнеспособную версию продукта), узнаете все тонкости вывода ML-модели в продакшн и узнаете, как работают ML-инженеры в реальной жизни.
Введение в Deep Learning
Основы Data Engineering
Дополнительные главы Python и ML
Экономическая оценка эффектов и разработка MVP
ML в Production
Углубленное изучение ML-разработки и выпускной проект по выбранной теме
При покупке курса вы можете получить специализацию по NLP без менторской поддержки бесплатно.
Deep Learning и нейронные сети
БОНУС
Где применяются нейросети? Как обучить нейронную сеть? Что такое Deep Learning? Ответы на эти вопросы вы узнаете в бонусном разделе DL.
Введение в Data Engineering
БОНУС
Вы узнаете, в чем различие ролей дата-сайентиста и дата-инженера, какими инструментами пользуется последний в своей работе, какие задачи ежедневно решает. Слова «снежинка», «звезда» и «озеро» обретут новые значения :)
Не важно, сколько вам лет и какой у вас опыт. Вы справитесь.