Длительность
13,5 месяцев
Формат
онлайн
Старт
скоро
*
*
Срок обучения без учета каникул и праздников.
Присоединитесь к новому потоку или начните учиться в удобное время
Кто-то верит в знаки
Мы верим в знания
— скидки до 60%
— прокачайте скилы — выберите 4 курса по дизайну или IT в подарок

Почему Data Science

Специалисты Data Science нужны во всех сферах бизнеса: от маркетинга и продаж до разработки продуктов, от финансов до управленческих решений. Только за последнюю неделю на HH.ru открылось более 500 вакансий, при этом инструменты нужны и для многих других позиций.
Яндекс, Сбербанк, Mail.ru, Ростелеком, РЖД и многие другие компании ищут специалистов по аналитике. Ритейл, киберспорт, путешествия, образование, медицина — грамотный анализ данных нужен вне зависимости от индустрии.
вакансия специалиста по Data Science
вакансия Data Scientist
вакансия senior machine learning engineer
вакансия старшего аналитика
вакансия Data Scientist Middle
вакансия Data Scientist
вакансия Data Scientist в Mail.RU Group
Ярмарка профессий
Спецпроект
Бесплатно
Протестируйте разные профессии и осознанно выберите ту, которая подходит вам. Вас ждут: 33 активности, 11 экспертов, 5 лайвов, демоуроки и ценные призы
01
02
03
04
7 из 10 работодателей нанимают людей с опытом

Вы получите реальный опыт

Это формат, где студенты решают реальные задачи бизнеса. У вас будет опыт, которого так не хватает выпускникам онлайн-школ. Вместе с ментором вы решите кейс для компании-партнера — и получите фидбэк от потенциального работодателя.
Реальный опыт даст студентам:
Реальные проекты в портфолио
Участие в стажировках и хакатонах
Шанс получить оффер от компании-заказчика
Опыт работы над проектом в команде
Поэтому мы придумали Фэктори
Модель распознавания жестов
Разработаете систему принятия решений, которая в режиме реального времени сможет реконструировать положение согнутых пальцев руки здорового пользователя. Преуспевшие студенты продолжат сотрудничество с компанией.
  • Python
  • Sklearn
  • Pandas
  • EDA
  • Keras
Анализ и сортировка данных
Вам предоставят изображения транспортных средств различных типов и с разных ракурсов. С помощью дескрипторов вы разобьете картинки на кластеры и интерпретируете каждый из них. В результате получите кейс в портфолио и обратную связь от эксперта из компании.
  • Pandas
  • ML
  • Numpy
Intellivision
4,6
432 отзыва
4,8
4,6
78
%
298 отзывов
172 оценки
235 отзывов

Студенты рекомендуют нас

Гибкий формат обучения для тех, кто работает

Наши курсы ориентированы на то, чтобы вы занимались без отрыва от работы и выделяли необходимое для учебы время в соответствии с вашим графиком
Чтобы обучение проходило максимально эффективно, мы чередуем форматы обучения: тренажеры, тесты, видеоуроки, онлайн-митапы, хакатоны и сквозные проекты.
Программы курсов создают эксперты с опытом от 5 лет. Студентам помогают опытные менторы-практики из IT-индустрии: дают подробную обратную связь, отвечают на вопросы.
С курсом для новичков справляются все студенты вне зависимости от возраста и предыдущего опыта — главное следовать программе обучения.

Для кого специализация

Новичок

Вы хотите освоить профессию Data Scientist с нуля. Для этого вам не потребуется специальных знаний, выходящих за рамки школьной программы. На специализации вы получите достаточную математическую подготовку и опыт программирования на Python, чтобы решать задачи машинного обучения.

Программист

Всего за год вы пополните портфолио рекомендательной системой, нейронными сетями, выполняющими разные задачи, примете участие в соревнованиях на Kaggle, хакатонах. Опыт программирования позволит вам быстро включиться в процесс обучения и освоить профессию Junior Data Scientist.

Аналитик

Вы уже работаете с данными, SQL, хотите расширить набор приемов, научиться работать с облачными хранилищами, попрактиковаться с Hadoop и Spark или полностью сменить профессию. За год вы освоите новую область, прокачаетесь в Big Data и сможете смело двигаться в направлении Data Science.

Есть ли курс лучше?

Есть, это наш флагманский курс «Профессия Data Scientist». Он длится дольше и стоит дороже.

В рамках большого курса вас ждут продвинутые навыки и выбор специализации: машинное обучение, компьютерное зрение или обработка естественного языка. Эти знания помогут стать уверенным middle-специалистом.

Рекомендуем курс тем, кто не хочет оставаться на позиции джуна и готов приложить усилия, чтобы двигаться дальше.

Вы изучите

Введение в Machine Learning
Курс по нейронным сетям и deep learning
Data-driven management
Python
SQL
Инженерия данных (Data Engineering)
Math & Machine Learning
ML в бизнесе
Deep Learning (Глубокое обучение)

Уровень окладов

Ваш уровень компетенции
по окончанию учебы
Начальный уровень
120 000 +
Средний уровень
250 000 +
Бизнес-аналитик
в Маркет
Высокий уровень
450 000 +
Аналитик больших данных
На основе данных
HH.ru (HeadHunter Russia)

Краткая программа
специализации

0

Введение в профессию

Введение в онлайн обучение
Обзор профессии Data Scientist
INTRO
2 модуля,
1 неделя
1

Основы программирования на Python

Введение в программирование на Python
Основные типы данных в Python
Условные операторы
Циклы
Функции — базовое и продвинутое использование
Стандарты оформления кода в Python
Python
8 модулей,
7 недель
2

Python для анализа данных

Инструменты для Data Science
Анализ данных на основе библиотек NumPy и Pandas
Визуализация данных с помощью Matplotlib, Seaborn и Plotly
Очистка данных и Feature Engineering
Объектно-ориентированное программирование и отладка кода в Python
Проект. Анализ резюме с платформы HeadHunter
Python
9 модулей,
7 недель
3

Подгрузка данных

Выгрузка данных из разных источников с помощью Python
Парсинг HTML-страниц из Интернета и API
Основы языка SQL для работы с базами данных
Выгрузка информации из баз данных с помощью SQL и Python
Проект. Анализ вакансий из базы данных HeadHunter
Python, SQL
9 модулей,
7 недель
4

Разведывательный анализ данных

Введение в разведывательный анализ данных на Python
Основы математической статистики и проверка статистических гипотез
Основы A/B-тестирования
Проектирование признаков (Feature Engineering)
Проектирование и управление экспериментами
Знакомство с платформой Kaggle
Проект. Выявление накрутки рейтинга отелей на Booking. Соревнование на Kaggle
EDA, KAGGLE
8 модулей,
7 недель
5

Введение в машинное обучение

Теория машинного обучения
Обучение с учителем: классификация и регрессия
Обучение без учителя: кластеризации и понижения размерности
Валидация данных и оценка качества моделей
Отбор и селекция признаков
Оптимизация гиперпараметров и улучшение качества модели
Продвинутые методы машинного обучения
Проект. Повышение эффективности маркетинговой кампании банка
ML
9 модулей, 9 недель
6

Математика в машинном обучении. Часть I

Линейная алгебра в контексте линейных методов
Математический анализ и методы оптимизации в контексте задачи оптимизации
Проект. Прогнозирование длительности поездки в такси
MATH&ML
7 модулей,
5 недель
7

Математика в машинном обучении. Часть II

Теория вероятности в контексте методов машинного обучения
Математика в контексте алгоритма деревьев решений
Математика в контексте ансамблевых методов
Математика в контексте обучения без учителя: кластеризация и техники понижения размерности
Проект. Сегментация клиентов онлайн-магазина подарков
MATH&ML
6 модулей,
5 недель
8

ML в бизнесе

Прогнозирование временных рядов
Построение рекомендательных систем
Подготовка модели к production и deploy
Оценка эффективности моделей в реальных бизнес-задачах
Воспроизводимость и контейнеризация приложений
Сервисная архитектура и оркестрация приложений
MATH&ML, DS-PROD
7 модулей,
7 недель
9

Финальный проект

По итогам вашего обучения вам предстоит самостоятельно выполнить дипломный проект на выбранную тематику, показав все, чему вы научились в процессе обучения. В конце дипломного проекта вам предстоит подготовить свое решение и презентацию, а также защитить проект перед дипломной комиссией, состоящей из экспертов в области Data Science. Эксперты оценят результаты вашей работы, проведут Code Review и дадут развивающую обратную связь!
10

Введение в Deep Learning (бонусный раздел)

Введение в нейронные сети
Фреймворки для глубокого обучения
Математика для нейронных сетей
Введение в CV. Сверточные нейронные сети
Fine-tuning & Transfer Learning
Введение в NLP. Рекуррентные нейронные сети
DL
6 модулей
11

Введение в Deep Learning (бонусный раздел)

Современные хранилища данных
Экосистема Hadoop

DE
2 модуля
Получить подробную программу
И план обучения на специализации Data Science