Запишитесь на курс или получите бесплатную консультацию
03
04
7 из 10 работодателей нанимают людей с опытом
Вы получите реальный опыт
Это формат, где студенты решают реальные задачи бизнеса. У вас будет опыт, которого так не хватает выпускникам онлайн-школ. Вместе с ментором вы решите кейс для компании-партнера — и получите фидбэк от потенциального работодателя.
Реальный опыт даст студентам:
Реальные проекты в портфолио
Участие в стажировках и хакатонах
Шанс получить оффер от компании-заказчика
Опыт работы над проектом в команде
01
02
Поэтому мы придумали Фэктори
Модель распознавания жестов
Разработаете систему принятия решений, которая в режиме реального времени сможет реконструировать положение согнутых пальцев руки здорового пользователя. Преуспевшие студенты продолжат сотрудничество с компанией.
Python
Sklearn
Pandas
EDA
Keras
Анализ и сортировка данных
Вам предоставят изображения транспортных средств различных типов и с разных ракурсов. С помощью дескрипторов вы разобьете картинки на кластеры и интерпретируете каждый из них. В результате получите кейс в портфолио и обратную связь от эксперта из компании.
Pandas
ML
Numpy
Intellivision
Мини-курс по нейросетям в подарок новым студентам
Это специалист, который обрабатывает большие объемы неструктурированной информации и превращает ее в упорядоченный набор данных. Дата-сайентист может:
Кто такой Data Scientist
Предсказать, окупится ли новый проект Оценить будущий спрос на товары и услуги Улучшить системы рекомендаций в соцсетях и сервисах Создать приборы для автоматической постановки диагноза пациенту Усовершенствовать транспортное движение Построить систему распознавания лиц
Дата-сайентист использует методы науки о данных (Data Science), строит и тестирует математические модели. Он находит закономерности, дает прогнозы и предлагает лучшие решения в разных сферах.
Как Data Science применяется в жизни
Специалисты подразделения Google AI, занимающегося искусственным интеллектом, создали модель глубокого обучения (Deep Learning) для распознавания кожных болезней. DL-модель может диагностировать 26 болезней кожи с точностью 97%.
Компания Frontier Development Lab вместе со студентами из разных стран и специалистами Nvidia разработала алгоритм, способный создать 3D-модель астероида за четыре дня. Этот метод используют сегодня для моделирования формы астероидов в реальном времени. А NASA применяет алгоритм визуализации данных о космическом мусоре.
Компания Google создала приложение, которое позволяет слабовидящим и слепым узнавать об объектах рядом с ними — оно в реальном времени распознает на изображении с камеры объекты и передает информацию пользователю. Еще оно умеет зачитывать текст, знаки, штрихкоды и другие визуальные объекты.
Распознавание кожных заболеваний
Алгоритм моделирования астероидов
Распознавание объектов для слабовидящих и слепых
По данным Всемирного экономического форума, работа в Data Science занимает первое место в рейтинге профессий с самым большим спросом на рынке до 2025 года.
Количество вакансий в Data Science выросло на 433% за 3 года
Ритейл, киберспорт, путешествия, образование, медицина — грамотный Data Scientist нужен практически в любой индустрии, а спрос значительно превышает предложение.
Почему пора обучиться IT-профессии?
Устойчивость и независимость
Льготы и «плюшки»
Высокая востребованность
Доход в любой валюте
IT-сфера наиболее устойчива к изменениям в мире. А значит, вам не придется волноваться о своем будущем.
Все лучшие предложения достаются айтишникам: сниженная ставка по ипотеке, высокая зарплата, комфортный офис, ДМС и др.
На рынке России прямо сейчас не хватает 1,5 млн специалистов, а в мире — гораздо больше.
Вы можете работать как в российской, так и в международной компании.
Новичок
Программа рассчитана на обучение науке о данных с нуля. Вы начнете с SQL и Python. Получите необходимую теорию по математике, статистике и теории вероятности и отработаете ее на практике. А через год легко сможете решать задачи и устроитесь на новую работу.
Программист
Научитесь работать с моделями машинного обучения, анализировать данные на Python и прокачаете аналитическое мышление.
Вам подойдет этот курс, если вы:
Аналитик
Начнете анализировать данные на продвинутом уровне, автоматизировать процесс сбора данных. Научитесь обучать модели и делать прогнозы, а также применять это для решения бизнес-задач.
После наших курсов студенты в среднем зарабатывают 180 000 ₽
Развивайте навыки и растите в цене
Senior-специалист в иностранной компании
8 000 $
Middle-специалист
180 000 ₽
Junior-специалист
80 000 ₽
Senior-специалист
250 000 ₽
*По данным hh.ru и indeed.com
Чтобы посмотреть как устроена работа в большой IT-компании
Чтобы быстрее влиться в среду
Чтобы расти в карьере и работать из любой точки мира
Вернем деньги за обучение, если не найдете работу после окончания курса.
Почему мы так говорим? Потому что уверены в навыках, которые даем, и в их востребованности на рынке.
Наш Центр карьеры работает со студентами с первого дня обучения — и до первого оффера. И даже дольше. Подготовим к трудоустройству: дадим много практики, реальные проекты для портфолио, поможем с резюме и познакомим с будущими работодателями.
Запишитесь на курс или получите бесплатную консультацию
Сопровождаем вас на всем пути, пока не получите тот самый оффер
Центр карьеры
Вместе создадим резюме, которое зацепит внимание работодателя и подсветит ваши достоинства кандидата на вакансию.
Дадим рекомендации покарьере. С карьерным консультантом вы сформируете план действий по достижению цели.
Поможем выйти на работу в зарубежную компанию — у наших HR-специалистов есть опыт подбора персонала на рынках США, Европы, Азии.
Познакомим с представителями компаний-работодателей. Узнаете, каких кандидатов предпочитают и что сделать, чтобы попасть в компанию мечты.
Научим проходить интервью сIT-рекрутерами иHR-менеджерами. Получите обратную связь и поймете, как перейти на следующий этап отбора.
Здесь начинающие специалисты:
В нашем карьерном сообществе 9000+ студентов и выпускников
Знакомятся с трендами и перспективами IT-рынка
Узнают о карьерных мероприятиях и вакансиях наших компаний-партнеров
Объединяются в команды для участия в хакатонах и ищут единомышленников для собственных проектов
Обмениваются опытом трудоустройства: делятся тестовыми заданиями и вопросами технических интервью
компаний работают с нами на постоянной основе
> 200
наших студентов получили новую работу или повышение на старой
71 %
студентов после ревью резюме Центром карьеры работодатели пригласили на собеседование
81 %
Это консультанты и карьерные коучи с узкой специализацией и опытом 10+ лет в HR и IT-рекрутинге в России и за рубежом
С вами будет работать команда из 40+ профессионалов в области карьеры
4,6
4,8
4,6
78
%
432 отзыва
298 отзывов
172 оценки
235 отзывов
Студенты рекомендуют нас
Фокус на инженерных специальностях помогает постоянно наращивать экспертизу и совершенствовать наши курсы.
9из 10
именно так оценивают наши студенты качество учебных материалов и менторскую поддержку
Гибкий формат обучения для тех, кто работает
Обучение онлайн из любой точки в удобном для вас графике
Разные форматы обучения для максимальной эффективности
Авторские программы от экспертов из крупных IT-компаний
Опытные менторы-практики из IT-индустрии дают подробную обратную связь и помогают усваивать материал
SkillFactory — узкоспециализированная школа: мы учим Data Science, аналитике данных и программированию
Эффективный формат онлайн-обучения
Занимайтесь в своем темпе
Наши курсы ориентированы на тех, кто работает и хочет сам регулировать нагрузку. Занимайтесь без отрыва от работы и выделяйте на учебу столько времени, сколько есть прямо сейчас (15 минут или 2 часа в день).
20% обучения — интересная и важная теория
Теория разбита на короткие блоки, после которых обязательно идет практика.
Вы смотрите короткие видео, изучаете текстовые материалы и приступаете к заданиям, чтобы закрепить знания.
80% обучения — практика в разных форматах
Для развития навыков у нас есть 5 видов практики: тренажеры, тесты, домашние задания, проекты и хакатоны. Разнообразие форматов помогает усваивать знания максимально эффективно.
Менторы и координаторы помогут дойти до конца
Все менторы — опытные практики из IT-индустрии. Они дают качественную обратную связь на задания, отвечают на вопросы и помогают студенту достичь своих целей во время обучения. Выпускники оценивают менторскую поддержку на 9,1 балла из 10.
Координаторы постоянно на связи, чтобы решить любой организационный вопрос. Их задача — мотивировать студентов и помочь пройти курс до конца.
Фокус на подготовке к трудоустройству
Вы тренируетесь на кейсах компаний, а также делаете проекты для реальных заказчиков в команде. Помогаем оформить резюме и подготовиться к собеседованиям.
Лучших студентов рекомендуем по накопленной базе работодателей. На стажировках в компаниях-партнерах вы отработаете навыки и пообщаетесь с потенциальными работодателями.
Не важно, сколько вам лет и какой у вас опыт, — вы справитесь.
Просто следуйте программе обучения.
БАЗА
На этом этапе вы изучите основы программирования на Python, научитесь предобрабатывать и анализировать данные, а также познакомитесь с основными задачами дата-сайентиста.
Программа курса «Профессия Data Science»
Введение
1 неделя
Вы сможете сформулировать для себя реальные цели обучения, узнаете, в чем ценность DS для бизнеса, познакомитесь с основными задачами дата-сайентиста и разберетесь, как строится разработка любого DS-проекта.
INTRO-1. Как учиться эффективно — онбординг в обучение
INTRO-2. Обзор профессии. Типы задач в Data Science. Этапы и подходы к разработке Data Science проекта
Проектирование разработки
5 недель
Вы научитесь работать с основными типами данных с помощью языка Python и сможете применять в повседневной работе циклические конструкции, условные операторы и функции.
PYTHON-1. Основы Python
PYTHON-2. Погружение в типы данных
PYTHON-3. Условные операторы
PYTHON-4. Циклы
PYTHON-5. Функции и функциональное программирование
PYTHON-6. Практика
PYTHON-7. Гид по стилю в среде Python (бонусный)
Работа с данными
8 недель
На этом этапе вы овладеете базовыми навыками работы с данными: научитесь подготавливать, очищать и преобразовывать данные так, чтобы они были пригодны для анализа. Кстати, об анализе: вы будете анализировать данные с помощью популярных библиотек Matplotlib, Seaborn, Plotly.
PYTHON-8. Инструменты Data Science
PYTHON-9. Библиотека NumPy
PYTHON-10. Введение в Pandas
PYTHON-11. Базовые приемы работы с данными в Pandas
PYTHON-12. Продвинутые приемы работы с данными в Pandas
PYTHON-13. Очистка данных
PYTHON-14. Визуализация данных
PYTHON-15. Принципы ООП в Python и отладка кода (дополнительный модуль)
Проект 1. Аналитика датасета по закрытым вопросам
Подгрузка данных
6 недель
Вы сможете выгружать данные из разных форматов и источников. А поможет вам в этом SQL — язык структурированных запросов. Вы научитесь использовать агрегатные функции, соединения таблиц и сложные объединения.
PYTHON-16. Как выгружать данные из файлов разных форматов
PYTHON-17. Получение данных из веб-источников и API
SQL-0. Привет, SQL!
SQL-1. Основы SQL
SQL-2. Агрегатные функции
SQL-3. Соединение таблиц
SQL-4. Сложные объединения
Проект 2. Подгрузка новых данных. Уточнение анализа
Статистический анализ данных
7 недель
Разведывательный анализ данных (EDA) — вот, что окажется в центре вашего внимания. Вы познакомитесь со всеми этапами такого анализа и научитесь проводить его с помощью библиотек Statsmodels, Scikit Learn, Seaborn, Matplotlib, SciPy, Pandas. Кроме того, вам удастся поработать на Kaggle, популярном сервисе по участию в соревнованиях.
EDA-1. Введение в разведывательный анализ данных. Алгоритмы и методы EDA
EDA-2. Математическая статистика в контексте EDA. Типы признаков
EDA-3. Проектирование признаков (Feature Engineering)
EDA-4. Статистический анализ данных на Питоне
EDA-5. Статистический анализ данных на Питоне. Часть 2
EDA-6. Проектирование экспериментов
EDA-7. Площадка Kaggle
Проект 2
Введение в машинное обучение
9 недель
Вы познакомитесь с ML-библиотеками для моделирования зависимостей в данных. Вы сможете обучить основные виды ML-моделей, провести валидацию, интерпретировать результаты работы и выбрать важные признаки (feature importance).
ML-1. Теория машинного обучения
ML-2. Обучение с учителем: регрессия
ML-3. Обучение с учителем: классификация
ML-4. Обучение без учителя: кластеризация и техники снижения размерности
ML-5. Валидация данных и оценка модели
ML-6. Отбор и селекция признаков
ML-7. Оптимизация гиперпараметров модели
ML-8. ML Cookbook
Проект 3. Задача классификации
ОСНОВНОЙ БЛОК
Линейная алгебра, математический анализ, дискретная математика — звучит страшно, но не пугайтесь: разберем все эти предметы и научим с ними работать! На втором этапе вы погрузитесь в математику и основы машинного обучения, узнаете больше о профессиях DS, а также благодаря профориентации выберете трек обучения второго года.
Математика и машинное обучение. Часть 1
6 недель
Вы сможете решать практические задачи с помощью ручного счета и Python (векторные и матричные вычисления, работа с множествами, исследование функций с помощью дифференциального анализа).
MATH&ML-1. Линейная алгебра в контексте Линейных методов. Часть 1
MATH&ML-2. Линейная алгебра в контексте Линейных методов. Часть 2
MATH&ML-3. Математический анализ в контексте задачи оптимизации. Часть 1
MATH&ML-4. Математический анализ в контексте задачи оптимизации. Часть 2
MATH&ML-5. Математический анализ в контексте задачи оптимизации. Часть 3
Проект 4. Задача регрессии
Математика и машинное обучение. Часть 2
6 недель
Вы познакомитесь с основными понятиями теории вероятности и математической статистики, алгоритмами кластеризации, а также научитесь оценивать качество произведенной кластеризации и представлять результаты в графическом виде.
MATH&ML-6. Теория вероятностей в контексте наивного байесовского классификатора
MATH&ML-7. Алгоритмы на основе деревьев решений
MATH&ML-8. Бустинг & Стекинг
MATH&ML-9. Кластеризация и техники снижения размерности. Часть 1
MATH&ML-10. Кластеризация и техники снижения размерности. Часть 2
Проект 5. Ансамблевые методы
ML в бизнесе
8 недель
Вы научитесь использовать ML-библиотеки для решения задачи временных рядов и рекомендательных систем. Вы сможете обучить ML-модель и провести ее валидацию, а также создать работающий прототип и запустить модель в веб-интерфейсе. А еще получите навыки A/B-тестирования, чтобы можно было оценить модель.
MATH&ML-11. Временные ряды. Часть 1
MATH&ML-12. Временные ряды. Часть 2
MATH&ML-13. Рекомендательные системы. Часть 1
MATH&ML-14. Рекомендательные системы. Часть 2
PROD-1. Подготовка модели к Production
PROD-2. Прототип Streamlit+Heroku
PROD-3. Бизнес-понимание. Кейс
Проект 6. Тема на выбор: временные ряды или рекомендательные системы